The Harmonic Index for Unicyclic and Bicyclic Graphs with given Matching Number

نویسنده

  • LINGPING ZHONG
چکیده

The harmonic index of a graph G is defined as the sum of the weights 2 d.u/Cd.v/ of all edges uv of G, where d.u/ denotes the degree of a vertex u in G. In this paper, we present the minimum harmonic indices for unicyclic and bicyclic graphs with n vertices and matching number m (2 m bn2 c), respectively. The corresponding extremal graphs are also characterized. 2000 Mathematics Subject Classification: 05C07; 05C70; 05C35; 92E10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

متن کامل

The Harmonic Index of Unicyclic Graphs with given Matching Number

The harmonic index of a graph G is defined as the sum of weights 2 d(u)+d(v) of all edges uv of G, where d(u) and d(v) are the degrees of the vertices u and v in G, respectively. In this paper, we determine the graph with minimum harmonic index among all unicyclic graphs with a perfect matching. Moreover, the graph with minimum harmonic index among all unicyclic graphs with a given matching num...

متن کامل

On the harmonic index of the unicyclic and bicyclic graphs

The harmonic index is one of the most important indices in chemical and mathematical fields. It’s a variant of the Randić index which is the most successful molecular descriptor in structure-property and structureactivity relationships studies. The harmonic index gives somewhat better correlations with physical and chemical properties comparing with the well known Randić index. The harmonic ind...

متن کامل

On the harmonic index of bicyclic graphs

The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...

متن کامل

On the Harmonic Index of Unicyclic Conjugated Molecules

The harmonic index H(G) of a graph G is defined as the sum of weights 2 d(u) + d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we first present a sharp lower bound on the harmonic index of unicyclic conjugated graphs (unicyclic graphs with a perfect matching). Also a sharp lower bound on the harmonic index of unicyclic graphs is given in terms of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015